You are here

Standard Project Layout

This is the default layout most projects will use.

Creating Adaptable Autonomous Systems for Energy-Efficient Buildings

A large body of research exists on robots and autonomous technology, but still little understanding of how to integrate them into everyday life. While people seem relatively comfortable with a Roomba vaccum, a subservient robot, they might be less willing to let technology assist in other areas of their living space. However, adapting technology into the home could have significantly positive benefits for the occupant. 

Agrivoltaics: Crop Production and Solar Panels on the Same Land

Global demand for food, energy, and water is increasing, which poses the challenge of how to meet these demands in an environmentally and economically sustainable way. At present, energy production is dominated by carbon-intensive fossil fuels; however, renewable energies are being integrated into the energy sector at an increasing rate. Bioenergy crops reduce dependence on fossil fuels, but the efficiency of crops converting sunlight to stored energy is low — and the water requirements from agronomic and industrial perspectives is high.

Wind Turbine/Pavilion Integration for Electricity Generation

This project, funded in late Fall 2019, aims to demonstrate a new way in which a pavilion can achieve sustainability by installing an on-site wind turbine as an energy-generating system.

An innovative, aerodynamic design will enable micro-wind turbines to fit within an organic sculpture in the built environment with aesthetic integrity. The outcome of the project is a parking pavilion that can also work as a charging station for electric cars, bikes, or scooters.

Integrating Groundwater Resources and Geothermal Energy for Water-Energy Security and Resilience

Funded in Spring 2020, this project aims to enhance water and energy security and resilience in urban systems, agricultural applications, and military bases by using groundwater resources and geothermal energy as an integrated system. Potential applications will improve military readiness and urban resilience to climate change by providing reliable indoor climate control and uninterrupted access to water.

iSEE funding for Campus as a Living Lab (CALL)

Sustainability isn’t just happening “out there;” it’s a consideration every day right here on our campus. By using our own facilities and community as a miniature model of the world at large, we can learn things that will make this campus better, but also make the world better.

Launched in February 2018, iSEE’s Living Lab program is designed to link campus sustainability targets to national and global sustainability, energy, and environment challenges.

Pages

Subscribe to RSS - Standard Project Layout